Jets & the Medium in PHENIX

Anne Sickles
Brookhaven National Lab
Jet Interactions with the Bulk Workshop
June 7, 2006

Why Jets?

- ▶ hard probes are calibrated → pQCD
- jets can be measured in heavy ions, pp, dAu, e+e-
- jet partons interact with the medium via the strong force
 - sensitive to entire lifetime of the system

data on hand

Allows systematic studies as a function of system and energy

PHENIX

- PHENIX is optimized to study a wide variety of probes
- charged particle tracking
- ► EMCal (e^{+/-}, γ)
- particle ID over wide p_T range and large acceptance
- triggers for rare events

Outline

- ▶ The Present: Two Particle Correlations as a Tool
 - Away Side Correlations: Shape Modifications
 - ▶ Same Side Correlations: Recombination, Surface Emission
- ▶ The Frontier: Three Particle Correlations to Understand Shape Modifications
- ▶ The Future: Direct γ Correlations--The Whole Story
- Conclusions

Warning: This is only a part of the PHENIX data that fits the theme of this workshop

Two Particle Correlations

Trigger: rare "high" p_T particles **Partners:** identify a hard scattering lower pt particles part of the same jet or di-jet $\Delta\Phi$: angular difference in plane perpendicular to beam direction

- identify jets statistically
 - triggers provide biased jets
- model independent
- works well in all collision systems at RHIC
- correct for non-uniform
 PHENIX azimuthal
 acceptance divide real Δφ
 distributions by those from
 mixed events (contain no
 correlations)

Finding the Jet Signal

Jets at Intermediate p_T

Correlation Function

charged hadrons

Flow Subtracted Jet Function

PHENIX, nucl-ex/0507004 submitted to PRL

$AuAu~62.4GeV^{\text{trigger: 2.5<pt}<4.0~\text{GeV/c}}_{\text{partner: 1.0<pt}<2.5~\text{GeV/c}}$

charged hadrons

Correlation Functions

$AuAu~62.4GeV^{\text{trigger: 2.5<pt}<4.0~\text{GeV/c}}_{\text{partner: 1.0<pt}<2.5~\text{GeV/c}}$

charged hadrons

Jet Functions--v₂ Subtracted

What about Cu+Cu?

The Split Quantified

Away side Splitting
Consistent with
only N_{part}
Dependence

Shape Summary

Away-side peak visible

Away-side shoulders visible

Both visible

Neither visible

based on PHENIX
Preliminary
AuAu 200GeV

from P. Stankus CIPANP 2006

3 Particle Correlations

see NN Ajitanand's talk at Hard Probes next week

Same Side Correlations

- Trigger particle is more likely to come from a hard scattering near the surface and have lost a little energy than to cor from the center and have lost a lot
 - ▶ Same side should be less modified
- ▶ Recombination: idea that partons close together in phase space combine to for final state hadrons
 - natural explanation for enhanced baryon production in heavy ion collisions
 - ► same side correlations with identific particles can help disentangle recombination and hard processes

PHENIX, nucl-ex/0603010

Baryons from Jets?

- measure correlations in the region of baryon/meson difference
 - identify trigger as baryon (p, anti-p) or meson (π, K),
 partners are charged hadrons
- no difference between baryon
 & meson triggers until the
 most central collisions (>10%)
 - not the same centrality dependence as p/π ratio

trigger: 2.5<pT<4.0 GeV/c partner: 1.7<pT<2.5 GeV/c charged hadron partners

Both Particles Identified

trigger: 2.5<pT<4.0 GeV/c partner: I.7<pT<2.5 GeV/c

- big difference
 between baryon and
 meson triggers with
 meson partners, only
 in very central
 collisions
 - ▶ is this recombination?
- no significant differences with baryon partners

p & p Correlations

trigger: 2.5<pT<4.0 GeV/c partner: I.7<pT<2.5 GeV/c

Near Side

Away Side

Opposite Charge

 $p-\overline{p} \& \overline{p}-p$

Same Charge p-p & p-p

Baryon number
conservation in near
side jet correlation at
all centralities

Near Side Jet Width

Opposite Charge

250

300

350

 N_{part}

0.05

50

100

partner: 2.0 < pT < 4.5 GeV/c π^0 -charged hadrons

Near side jet
width broadens significantly
with centrality
at intermediate p_T

150

200

No centrality dependence at high p_T

γ-Jet Correlations

Inclusive γ trigger > 5GeV Charged hadron partners

- Direct γ Jet
 correlations will allow a measurement of the fragmentation functions
 - subtracting the π⁰
 contribution is hard,
 work ongoing in
 PHENIX--results
 soon

$$x_E = p_{Ta} \cos \Delta \psi / p_{Tt}$$

Conclusions

- ▶ intermediate p_T is a great place to study interactions between the medium and hard probes
- robust dip/plateau in AuAu away side correlations
 - dramatic and unexpected
 - many interesting theoretical ideas exist, need to understand how to distinguish among them experimentally
- same side correlations are modified too
 - baryon excess has hard scattering origin
 - near side correlation width increases with centrality
 - surface emission is too simplistic at intermediate p_T

Going Forward

- We know jets are strongly modified by the medium
 - need to quantify the strength of the away side modification
 - ▶ need to fill in the centrality, particle type, system size, energy and p_T dependence of the correlation variables
- ▶ How do we extract the most information about the medium?

BACKUP

How Robust is the Dip?

$$C(\Delta \phi) = \frac{dN_{pair} / d\Delta \phi}{dN_{mix} / d\Delta \phi}$$

Raw Correlation Function (NO v2 subtraction) is Flat

AuAu High p_T

baryons from jets?

- If baryon excess has nothing to do with hard scattering the extra baryons should have no jet like partners
 - the red line dilutes the pp yield per trigger by the fraction of baryons which are assume to be from the non-jet source
 - the data are above the line so some fraction of the baryon excess must be due to hard scattering

PHENIX, PRC 051902(R) 2005